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Abstract. By constructing the fold similarity network (FSN), we present an alternative approach to the
characteristic and architecture of protein fold space. The degree distribution P (k) of FSN differs far from
that of the random network with the same number of nodes and connections. The investigation shows that
FSN possesses small-world property and broad-scale feature. In order to access to the assumption of the
dynamics behavior for FSN, we design a simple evolutionary dynamics model based on the duplication and
variation fashions of protein folds. The simulation network generated by this model is a small-world one
and reproduces the broad-scale degree distribution consistent with that of FSN. It seems that this model
can be used to depict the divergent evolution and expanding progress of protein fold space.

PACS. 87.15.-v Biomolecules: structure and physical properties – 87.15.Aa Theory and modeling;
computer simulation – 87.23.Kg Dynamics of evolution

1 Introduction

As the structural unit, protein domain has hydrophobic
core and exists as a distinct region of protein 3D struc-
ture [1]. Therefore, many large proteins can be divided
into spatially compact domains. It is well known that the
domains can be clustered together into families based on
their sequence identities of 30% or higher. Different fam-
ilies can be further grouped into folds according to their
three-dimensional structure similarities [2]. If the domains
have the same major secondary structures which are ar-
ranged with the same topology, they are defined as pos-
sessing a common fold. Consequently, many proteins with
low sequence similarities share a similar three-dimensional
structure or fold [3]. Since a number of sequences cor-
respond to a specific fold, the number of folds is much
smaller than that of sequences [4–6]. In addition, compar-
ison of protein structures can reveal distant evolutionary
relationship that would not be detected by sequence in-
formation alone. Therefore, the structure is a more robust
characteristic for proteins comparing with sequence. With
the greatly increasing in the number of structurally deter-
mined proteins, one of the principal goals of the structural
genomics initiative is to enhance the understanding of pro-
tein fold space in the near future [7–12].

The first step in understanding complex 3D structures
of proteins, deposited in Protein Data Bank (PDB) [13],
is the classification of protein structures. Currently, there
are several classification schemes that group the current
set of known protein structures according to the structural
similarities of their folds [14]. Each classification scheme
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is derived from different algorithms with slightly differ-
ent goals. Among these classification schemes, the Struc-
tural Classification of Proteins (SCOP) [2] is a broadly
used database for deriving the structural and evolutionary
relationships of proteins. The entries in SCOP are pro-
tein domains. All entries can be classified hierarchically
into families, superfamilies, folds, and classes. In addi-
tion, FSSP [15] is based upon the DALI algorithm [16,17],
CATH [18] has its roots in the SSAP algorithm [19] and
MMDB uses the VAST algorithm [20]. Anyway, through
the comparison and classification of protein structures,
one can understand the evolutionary and functional re-
lationships among proteins [16,17,21–23].

In order to investigate the dynamic evolution-
ary progress of protein structure universe, Dokholyan
et al. [24,25] constructed a structural similarity network
named protein domain universe graph (PDUG). They con-
sidered only protein domains that had low pairwise se-
quence identities (<25%). On the basis of the rule to clas-
sify domains into families in SCOP, these domains are in
principle equivalent to the SCOP families [2]. Therefore,
PDUG could be regarded as a structural similarity net-
work at the level of SCOP family. In PDUG, any pair
of domains was connected on condition that the DALI
Z-score [16,17], a measure of structural similarity, between
them was above a given threshold value Zmin. With the
aim of investigating protein structure universe at the level
of family, they assigned Zmin = 9. As a result, these do-
mains acting as family agents formed many disjoint clus-
ters in PDUG, which were in principle equivalent to the
SCOP folds [26]. They investigated the network charac-
teristics of PDUG and built an evolutionary dynamics
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model to reproduce the scale-free feature of PDUG. For
the reason that each cluster in PDUG is disjointed, the
network characteristics of PDUG are the sum of rela-
tionships within each cluster without regarding the rela-
tionships among the PDUG clusters, namely, the SCOP
folds [26].

In protein universe, protein structures directly link to
the biological functions thus are far more conserved than
sequences in carrying phylogenetic signals [27,28]. It is be-
lieved that domains in one family have close evolutionary
relationship while folds can pool distant relatives within
different families. Therefore, folds are among the most
conserved components in nature and can be used to study
the distant evolutionary relationships [29]. Recently, Hou
et al. [30] built a three-dimensional map of protein fold
space based on the multidimensional scaling method. In
their map, the structurally similar folds were represented
by spatially adjacent points. It was found that all folds
naturally separated into four distinct clusters, which cor-
responded to α, β, α + β, and α/β classes in SCOP. The
folds belonging to the same cluster had larger structural
similarity, while the folds belonging to different clusters
had smaller structural similarity. Going a further step,
they designated a point as the evolution origin in the fold
space. Moving away from the point, the size of the fold
generally increased with increasing the length of its sec-
ondary structures and the folding complexity.

In order to outline more detailed relationships among
protein folds, we construct a structural similarity network
of folds (fold similarity network) and obtain some inter-
esting characteristics of this network. With the attempt
to reveal the principle underlying such characteristics and
conjecture how the folds evolve during the biological evo-
lution, we build a simple model based on the duplication
and variation fashions of protein folds. The simulated re-
sult is quite suggestive that the currently observed folds
may be originated from a divergent evolution of protein
folds from one or a few precursor folds, such as the so-
called ‘evolution origin’ in protein fold space.

2 Model and methods

2.1 Database

Despite the manual derivation, SCOP is a valuable struc-
tural classification database as the resource for detailed
evolutionary information [2,14]. Hereby, we will build
the data set of protein folds FD based on SCOP. The
protein structures deposited in the Protein Data Bank
may contain irregularities [31]. To overcome this short-
age, the SPACI score is used as an approximate mea-
sure to report the quality of protein structures [32]. Based
on this measure, the ASTRAL database selects a single
representative domain for each SCOP fold according to
the highest SPACI score [32]. We derive the representa-
tive domain for each fold from the ASTRAL database
(http://astral.berke ley.edu) and form the fold data
set FD. There are 179 α folds, 126 β folds, 121 α/β folds,

and 234 α+β folds in SCOP 1.65, so FD consists of 660 do-
mains. Each domain in FD represents a fold type.

By using the domains in FD, we expect to construct
the fold similarity network (FSN) by the means analogous
to PDUG [24]. It should be noted that, although PDUG
and FSN both regard protein domains as nodes in graph
or network, the notable distinction between them can be
seen as follows. PDUG consists of all the domains that do
not exhibit pairwise sequence similarity in excess of 25%.
It means that each domain in PDUG is equivalent to a
SCOP family, however, the domains in FSN represent the
SCOP folds. It is well known that the families are highly
unevenly distributed in folds [6]. There are 2051 families
belonging to the 660 folds in FD. Among them, 384 (58%)
folds contain only one family each, however, 66 (10%) su-
perfolds contain 1057 (51.5%) families together. Herein,
we use FD to represent the protein fold space.

2.2 Fold similarity network

In DALI program for structural alignment [16,17], Z-score
is a quantitative measure of the structural similarity.
Domany et al. [33] proposed that the matrix of pair-
wise Z-scores of domains could be viewed as a weighted
graph and used to classify protein domains. In addition,
Dokholyan et al. [24,25] obtained an unweighted protein
domain universe graph by defining a threshold value of
structural similarity, namely, Zmin = 9. In the present
study we calculate the pairwise structural similarity of the
660 domains (folds) in FD by using the program DALI.
Then we construct the structural similarity network of
protein folds following others. Each node in the network
expresses a fold, which is represented by the representa-
tive domain. Whether two nodes are connected or not de-
pends on the structural similarity Z-score between the
corresponding two folds. After assigning an appropriate
threshold value of Zmin, any two folds in FD that have
Z-score Z ≥ Zmin are connected by an identical edge
(connection), otherwise, they are not. We create the fold
similarity network (FSN) following this way. In FSN, each
node denotes a fold in FD and each edge (connection)
between two nodes represents that the structures of cor-
responding folds are similar.

As mentioned in former section, when Zmin = 9,
PDUG consists of disjoint clusters. The network proper-
ties of PDUG are just the sum of relationships within each
cluster. Therefore, the relationships among the PDUG
clusters, in principle equivalent to the SCOP folds, are un-
explored. As the domains in FD represent different folds
in protein universe, we expect to uncover the relationships
among the folds via the investigation of fold similarity net-
work.

The study of network has recently become a blossom-
ing area in science across many disciplines [34–41]. The
properties of a network can be described by several pa-
rameters. In a network with N nodes [39,42,43], the de-
gree kv of node v(v = 1, 2, · · · , N) is the number of nodes
that are connected to it. Hence, the average degree of a
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network is 〈k〉 =
∑

v kv/N . The average degree 〈k〉, to-
gether with the total number of nodes N , can determine
the size of the network. Besides these two parameters, the
path length between two nodes is defined as the number of
edges in the shortest path between them. The characteris-
tic path length L of a network is the average path length
over all pairs of nodes. In addition, the clustering coef-
ficient Cv of node v is the connection fraction among kv

neighbors of node v, i.e., Cv is the ratio between the actual
number of connections Ev and the possible number of con-
nections kv(kv−1)/2. Thus we have Cv = 2Ev/kv(kv−1).
Therefore, the average clustering coefficient for the entire
network is C =

∑
v Cv/N . In Section 3, we will discuss the

network properties of FSN and compare them with those
of a random network.

2.3 The evolutionary dynamics model

Recently, many models are developed to fit the broadly ex-
isting scale-free behaviors in complex networks [24,40,44].
The basic mechanism of these models is “preferential at-
tachment” [38]. In biology, several duplication and di-
vergence models have been proposed with preferential
attachment to simulate the evolution of protein-protein
interaction networks [45]. Analogously, we build an evolu-
tionary dynamics model to reproduce the fold similarity
network. In this model, each node represents a fold and
the connection (edge) between two folds denotes that these
two folds are structurally similar. In the beginning, we set
up a single node to represent an initial fold. At each time
step t, a new fold is generated by means of heredity or
gene duplication, so the total number of folds is t after t
steps. At the step t, we randomly select a fold vm from
the t−1 already existing folds as the parent fold and gen-
erate a new fold vt as the offspring fold. The offspring vt

is structurally similar to the parent vm, i.e., vt and vm

are certainly connected. Whether the new fold vt is con-
nected to the neighbor folds of vm or not is determined
by the competition between heredity and variation. Thus,
we introduce the variation threshold µ, which takes the
value from 0 to 1. We can judge whether the variation of
offspring fold vt takes place or not by taking a stochas-
tic number η ranging from 0 to 1. If η ≥ µ, the variation
occurs and the offspring fold vt is not connected to the
neighbors of the parent fold vm. If η < µ, the offspring
fold retains the heredity and has the opportunity to be
connected to the neighbor folds of vm. The connection
probability is still µ. In order to determine whether the
offspring fold vt is connected to the neighbor vi or not,
we take another stochastic number η

′
. If η

′
< µ, vt and vi

are connected, otherwise, they are not. After N evolution
steps, a simulation network with N nodes comes into be-
ing. It can be seen from the above discussion that, there is
only one adjustable parameter in this model, the variation
threshold µ, which determines the connections in the sim-
ulation network. After determining µ, the average degree
〈k〉 can be identified. Together with the number of nodes
N , the size of the simulation network can be determined
by a certain µ.

Fig. 1. The distribution of Z-scores in the fold data set (FD).
Inset is the single-logarithmic plot of P (Z). The full line is the
plot of equation (1). It shows that the distribution of Z-scores
follows an exponential relation.

To reproduce PDUG, Dokholyan et al. proposed a
more complex model. In PDUG, each domain represented
a sequence family and the families belonging to different
folds constituted disjoint clusters. To be consistent with
this, their model led to two situations: (1) the offspring
and parent domains were structurally similar and con-
nected (i.e., located in the same cluster and belonged to
the same fold); (2) they were structurally dissimilar and
not connected (i.e., located in different clusters and be-
longed to different folds). Therefore, their model depicted
the evolutionary manner of protein families and repro-
duced the disjointed folds in PDUG. For the case of folds,
FSN is a connected network, i.e., there is no disjointed
clusters in FSN (see Sect. 3.1). Consequently, the offspring
and parent folds are presumed to be always structurally
similar and they are certainly connected in our model.

3 Results and discussion

3.1 Constructing FSN from FD

In order to construct the fold similarity network (FSN)
from the fold data set (FD), we carry out all-against-all
structural alignments for all folds in FD by DALI structure
comparison algorithm [16,17]. Then we obtain 96 659 non-
zero Z-scores from this procedure. The value of Z-score
indicates the degree of structural similarity between two
folds. In FD, the distribution of Z-scores P (Z) as log–log
plot is shown in Figure 1. The inset is a single-logarithmic
plot. It shows that the distribution of Z-scores can be
properly fitted by

P (Z) = 0.1 exp(−1.2Z). (1)

Comparing Figure 1 with Figure 1b in the work of
Dokholyan’s group [25], we find that the distribution of
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Fig. 2. The size of the largest connected network (Q) in FD
against the threshold value Zmin. The dotted line represents
Zmin = 2.

Z-scores ranges to 10 for FD and to 40 for PDUG, respec-
tively. This difference of Z-score distribution is due to the
difference of domain selection. In the present work, we
take one domain in each fold, and in PDUG the domains
are randomly selected without considering their fold types.
Therefore, the present distribution represents the behav-
ior of folds and the corresponding distribution of PDUG
indicates the characteristic of families. Next, we will deter-
mine the connections among folds according to the cutoff
threshold Zmin.

It is generally accepted that, the aligned two struc-
tures have significant structural similarity only when Z �
2 [16,33,46,47]. For Zmin = 2, there are 585 (about 90%)
folds in FD forming a connected similarity network. It
indicates that nearly all folds in FD are structurally re-
lated, which implies the evolutionary relationship among
the folds. Therefore, we naturally select the threshold
value Zmin = 2. As a result, 585 folds in FD form the
largest cluster by 7992 connections. Among the remaining
75 folds, 69 folds are orphan folds and 6 folds are con-
nected in pairs. We can ascribe these scarce disconnected
folds either to the result of serious variation in biological
evolution or to the lack of the structural data disconnect-
ing them from the largest cluster. After removing these
rare variety, the 585 folds compose a connected fold simi-
larity network (FSN). Among the 585 folds in FSN, there
are 167 α folds, 96 β folds, 120 α/β folds, and 202 α + β
folds, respectively.

To inspect the effect of different Zmin on the topolog-
ical features of the similarity network, we calculate the
number of folds Q belonging to the largest connected net-
work in FD for various Zmin. The dependence of Q on
Zmin is plotted in Figure 2. It can be seen that, when
Zmin > 2, Q will decrease fast with Zmin. For instance,
when Zmin = 3, only 418 (about 60%) folds in FD are in-
cluded in the largest connected network and the rest are
isolated. That is to say, about 1/3 folds have no struc-
tural and then evolutionary relationships to others, which
would lead to an unreasonable similarity network. When
Zmin < 2, large amount of trivial connections between

Fig. 3. Diagrammatic representation of the 585-dimensional
symmetric adjacency matrix B̂ for the fold similarity network
(FSN). The cross at site (i, j) represents that there is a connec-
tion between nodes vi and vj in FSN. In this matrix, the 585
folds are numbered in the sequence: 1 ∼ 167 (α), 168 ∼ 263 (β),
264 ∼ 383 (α/β), and 384 ∼ 585 (α+β fold class), respectively.
In each class, the folds are numbered randomly. According to
four fold classes, matrix B̂ can be partitioned into 10 differ-
ent submatrices. The marked number in each submatrix is the
density of connections in it.

the folds will be created in this work. For example, when
Zmin = 1, the number of connections created above Zmin

is 29 912. Because the created connections are identical,
the trivial connections will blind the essential similarity
among the folds. As a result, the degree distribution shows
a maximum P (k) around k = 90, which is similar to a
random network. According to these reasons, we choose
Zmin = 2 as the cutoff Z-score to define the connection
between two folds in constructing the fold similarity net-
work (FSN).

3.2 Representing FSN by the adjacency matrix

The fold similarity network (FSN) can be represented by a
symmetric adjacency matrix B̂. The dimension of B̂ is 585,
which corresponds to the number of folds in FSN. When
two folds vi and vj are connected, the value of element bij

in B̂ is 1, otherwise, it is 0. Figure 3 shows the adjacency
matrix B̂ represented by symbols. When bij = 1, a cross
appears at the site (i, j), otherwise, nothing occurs. In
Figure 3, the 585 folds are numbered in the sequence of
fold classes: 1 ∼ 167 (α), 168 ∼ 263 (β), 264 ∼ 383 (α/β),
and 384 ∼ 585 (α + β fold class). In each fold class, the
folds are arranged randomly. Therefore, the matrix B̂ can
be partitioned into 10 different submatrices according to
the fold classes. Among them, four submatrices along the
diagonal of B̂ represent the intra-connectivities within α,
β, α/β, and α + β folds, respectively. However, the other
six submatrices represent the inter-connectivities between
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two classes of folds. Therefore, we name these two kinds of
submatrices as intra-submatrices and inter-submatrices.

It can be seen from Figure 3 that the distribution of
symbols is uneven in B̂. The symbols are densely dis-
tributed in the four intra-submatrices, which indicates the
high connectivity within α, β, α/β, and α + β folds, re-
spectively. In each submatrix, the density of connections
is defined as the ratio of the number of symbols (actual
number of connections) to the number of sites (possible
number of connections) in the submatrix. In Figure 3, the
number marked in each submatrix is the corresponding
density of connections. In the intra-submatrices, the den-
sity of connections is high. It means that the folds, which
belong to the same fold class, have high probability to
be structurally similar with each other. This result is well
consistent with the fold map obtained by Hou et al. [30].
The density of connections is 0.385 for self-submatrix of
α/β folds, however, it is 0.034 for that of α + β folds. Al-
though these two classes of folds both consist of α and β
secondary structures, they still have remarkable difference
in the connectivities of intra-submatrices. The difference
may arise from the distinct topological arrangement of α
and β secondary structures in these two classes of folds.
In α/β folds, α and β secondary structures are arranged
alternative, which can induce the relative stable architec-
ture and thus result in high probability to be structurally
similar among α/β folds.

3.3 Structural characteristics of FSN

As described above, 585 folds in FD are connected and
form the fold similarity network (FSN). In FSN, each
node represent one fold and the connection between two
nodes represents the structural similarity between the cor-
responding folds. The connections in FSN are unevenly
distributed among the folds, which may imply the unique
network properties of the FSN.

In general, the properties of a network can be charac-
terized by several network parameters such as the degree,
clustering coefficient, and characteristic path length. We
calculate the degree kv and clustering coefficient Cv for
each node in FSN (v = 1, 2, · · · , 585). The average de-
gree 〈k〉FSN is 27.3, average clustering coefficient CFSN is
0.447, and the characteristic path length LFSN = 2.8. For
comparison, we realize 100 random networks (RNs) with
the same number of nodes and connections to FSN, i.e.,
〈k〉RN = 〈k〉FSN. Differing from the connections in FSN,
the connections in each realization of RN is randomly ar-
ranged. It is known that for random network consisting of
N nodes, the average clustering coefficient CRN = 〈k〉/N
and the characteristic path length LRN = lnN/ ln 〈k〉 [43].
Thus we can theoretically obtain that the average clus-
tering coefficient CRN = 0.046 and characteristic path
length LRN = 1.9 for random network (RN) with N = 585
and 〈k〉 = 27.3. Meanwhile, the averaged values of CRN

and LRN over the 100 realizations are 0.047 ± 0.001 and
2.23 ± 0.01, respectively. In graph theory, the two pa-
rameters L and C are customarily used to determine the
small-world property of a network. Making a comparison

Fig. 4. The degree distribution of the fold similarity network
(FSN) (in circles). Along with it is the degree distribution of
the random network (in dots). For both networks, the node
number N = 585 and the average degree 〈k〉 = 27.3. The
result of random network is averaged over 100 realizations.

between a network and a random network with the same
number of nodes and connections, if the average clustering
coefficient of the network C � CRN and the characteris-
tic path length L � LRN, this network can be regarded
as a small-world network [39]. Therefore, both the the-
oretic and calculated values shows that CFSN � CRN

and LFSN � LRN, from which we can infer that FSN
exhibits small-world property. The high clustering coef-
ficient and small characteristic path length in FSN can
be comprehended as the result of transition of the struc-
tural similarity in a cluster of folds, i.e., if a given fold
has structural similarity to one of two structurally sim-
ilar folds, it often has structural similarity to the other.
Therefore, the neighbors of a fold tend to be connected
to each other. It results in the high clustering coefficient
for the folds in FSN. As to the characteristic path length,
due to the continuous transition of the structural similar-
ity, the path between two folds may become short. It leads
to the small characteristic path length for FSN. As for the
case of PDUG, because it consists of disjoint clusters, the
two nodes belonging to different clusters can never be con-
nected through any path. Thus, the path length between
these two nodes is infinite. So does the characteristic path
length of PDUG.

To further investigate the properties of the fold simi-
larity network, we calculate the probability P (k) for the
nodes that have degree k. The degree distribution of FSN
is plotted in double-logarithm in Figure 4. For comparison,
we also plot the degree distribution of the above random
network (RN). It can be seen from Figure 4 that the degree
distribution of RN has the form of a Poisson distribution
with the peak around 〈k〉 = 27.3. Differing dramatically
from RN, the connected FSN has the highest probability
for the folds possessing the lowest degree k = 1. It means
that the dominant folds in FSN have only one connection
to others. Figure 4 shows that in the region of small k, the
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degree distribution has the form P (k) = 0.3(k + 2.2)−1.1.
This type of asymptotic power-law distribution is often
found in wide fields of biology and physics, which indi-
cates the “preferential attachment” as a general manner
in the evolution of network [40]. In the region of large k, a
cutoff takes place instead of power-law tail. The cutoff of
the degree distribution at large k is often observed in real
networks also [48]. The peculiar behavior of the degree
distribution of FSN can be explained as follows. Firstly,
we pay attention to the preferential attachment behav-
ior at small k. If a fold has structural similarity to many
other folds, it may contains commonly occurring super-
secondary structural motifs (such as β-meanders, Greek
keys, α-β plait motifs or α-hairpins) [49]. Therefore, such
fold may have the opportunity to be structurally similar to
more other folds. This is just the “preferentially attached”
behavior: a new node prefers to be connected to the node
which has already been connected to many nodes. Next
we turn our attention to the cutoff behavior at large k.
As a structural prototype, every fold has its unique ar-
chitecture to tolerate the specific function. Therefore, a
fold could not be structurally similar to too many folds.
Even though a fold has the partiality for preferential at-
tachment, the degree of such fold could not approach to
an infinite value, which leads to the cutoff of degree dis-
tribution at large k region for FSN. Thus, FSN may be
referred to as a broad-scale network [48].

3.4 The simulation of FSN with an evolutionary
dynamics model

In the past subsection we have proved that the fold simi-
larity network (FSN) has small-world property and can be
classified as a broad-scale network. Now we want to ask:
how does the fold space come into being, namely, how
does the biological evolution imprint on the variation of
folds? To address this question, we build an evolutionary
dynamics model to simulate the formation of FSN based
on duplication and variation fashions (see Sect. 2.3). In
order to simulate the fold similarity network, the simu-
lation network generated by this model should have the
same size to the actual one, i.e., N = 585 and 〈k〉 = 27.3.
Therefore, we set the evolution step as 585 and intend to
determine µ according to 〈k〉 = 27.3. As a detail instruc-
tion, we will realize the relationship between µ and 〈k〉
at N = 585 by both the simulated and the theoretical
means. In the simulation procedure, we obtain the simu-
lated 〈k〉 with the error bar by averaging 100 realizations
of this model for a given µ. The simulation relationship
are plotted as dots in Figure 5.

Moreover, we derive the relationship between 〈k〉 and
µ by a theoretical means. The procedure of derivation is as
follows. Let K denote the sum of degrees of existing nodes
in the network. At the time step t, an offspring node vt

is generated. If variation occurs, vt is connected only to
the parent node vm but not to any neighbor of vm. In
this case, K is increased by 2 because only one connection
is generated at this step. If variation does not occur, vt

is connected to both vm and a part of neighbors of vm.

Fig. 5. The dependence of the average degree 〈k〉 on the varia-
tion threshold µ in present evolutionary dynamics model. The
dots represent the simulation result and the curve is the theo-
retical result represented by equation (4). The number of nodes
in the simulation network is N = 585.

Among km neighbors of vm, which one is connected to vt

is stochastic, but the total number of connected neighbors
is a certain value of µkm. As a result, when variation does
not occur, the increment of K is 2 + 2µkm. Because the
probabilities of variation and unvariation are 1 − µ and
µ, respectively, the total increment of K is 2(1 − µ) +
(2 + 2µkm)µ. Taking the average number of degree 〈k〉
(=K/t) as the number of neighbors of the parent node
km approximately, the increment of the sum of degrees of
existing nodes from t− 1 to t time step can be written as

dK

dt
= 2 +

2µ2K

t
. (2)

For any µ, when t = 2, K = 2. With this initial condition,
equation (2) has a solution as

K =
2t

1 − 2µ2
+

(

1 − 2
1 − 2µ2

)

· 21−2µ2 · t2µ2
. (3)

Substituting 〈k〉 (=K/t) for K, and taking t = N , equa-
tion (3) becomes

〈k〉 =
2

1 − 2µ2
+

(

1 − 2
1 − 2µ2

)

·
(

N

2

)2µ2−1

. (4)

To be consistent with the size of FSN, we set N = 585. The
theoretical results represented by equation (4) is plotted in
Figure 5 too. Figure 5 shows that the theoretical result is
consistent with the simulated one. It can be seen from Fig-
ure 5 that the average degree 〈k〉 depends monotonously
on the variation threshold µ. As pointed in Section 3.3,
the average degree 〈k〉 is 27.3 for FSN. In order to keep
the same number of connections in present model with
that in FSN, we should take 〈k〉 = 27.3 in present model.
Figure 5 shows when 〈k〉 = 27.3, the corresponding vari-
ation threshold is about 0.8. Consequently, we can obtain
the simulation network possessing the same size (N = 585



Z.-B. Sun et al.: The architectonic fold similarity network in protein fold space 133

Fig. 6. The degree distribution of the simulation network (rep-
resented by real line) generated by the evolutionary dynamic
model with µ = 0.8. For comparison, the degree distribution
of the FSN (represented by circles) is also plotted.

and 〈k〉 = 27.3) to that of FSN by setting µ = 0.8 in the
present model.

To determine whether the simulation network resem-
bles a small-world or a random one, we calculate its av-
erage clustering coefficients CEM and characteristic path
lengths LEM and compare them with those of a random
network. Over 100 realizations of the evolutionary model,
the averaged values are CEM = 0.561 ± 0.025 and LEM =
3.69±0.40. As to the random network with the same size,
the corresponding values are CRN = 0.047 ± 0.001 and
LRN = 2.23±0.01. Thus, we obtain that CEM � CRN and
LEM � LRN, which suggests that the simulation network
possesses the small-world property. In addition, the broad-
scale feature of the simulation network is determined by
investigating its degree distribution. The simulated degree
distribution averaged over 100 realizations of the present
model is plotted in Figure 6 as real line. It shows that
the simulation network also has the broad-scale feature.
For comparison, we also re plot the degree distribution of
the fold similarity network (FSN) in Figure 6. It can be
seen that the degree distribution of the simulation net-
work fits that of FSN reasonably. Therefore, besides the
same number of nodes and the average degree as FSN, the
simulation network possesses both the small-world prop-
erty and broad-scale feature similar to that of FSN. Based
on these results, we argue that the present model can re-
produce the basic topological properties of FSN and thus
be used to depict the divergent evolution and expanding
progress of protein fold space.

It should be emphasis that the present model, being a
schematic one, does not aim at a realistic description of
protein evolution, which should be the result of the dupli-
cation and variation at the level of sequences or domains
in a more complex way [3,24,25,50]. However, we still at-
tempt to conjecture the scenario about the fold evolution
by taking our eyesight on a higher level of protein fold.
It seems that such model validates the viewpoint that all

the modern proteins might have evolved from a few pre-
cursors.

4 Conclusions

Nature shows an extraordinary diversity of both sequence
and structure while preserving biological function. This
contradiction can be brought under a single roof if we no-
tice that there is a limited number of protein folds in na-
ture [49]. We construct the fold similarity network (FSN)
and discover that FSN possesses of the small-world prop-
erty and broad-scale feature. These characteristics of FSN
may be derived from both the transitivity of structural
similarity and the existence of super-secondary structural
motifs in folds. FSN can be described by an evolutionary
dynamics model based on duplication and variation fash-
ions. It indicates that although the biological evolution
are perfectly complex, the nature seems to economically
invent new fold in a relatively simple manner. As a result,
the arriving fold similarity network exhibits the elegant
architecture.
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